Asymptotic Behavior of Orthogonal Polynomials Corresponding to a Measure with Infinite Discrete Part off a Curve

Rachid Benzine
Department of Mathematics, University of Annaba, B.P 12 El Hadjar, 23000 Annaba, Algeria
Communicated by W. Van Assche

Received January 4, 1996; accepted in revised form April 11, 1996

We determine the asymptotic behavior of orthogonal polynomials associated to a measure $\alpha=\beta+\gamma$, where β is a measure concentrated on a rectifiable Jordan curve and γ is an infinite discrete measure. © 1997 Academic Press

1. INTRODUCTION

Let α be a finite positive measure defined on the Borel sets of C. If $F=$ support α and if all moments of α exist, then the monic orthogonal polynomials associated to the measure α are given by

$$
\begin{equation*}
L_{n}(z)=z^{n}+\cdots, \quad \int_{F} L_{n}(z) z^{p} d \alpha=0 ; \quad p=0,1,2, \ldots, n-1 . \tag{1.1}
\end{equation*}
$$

If the measure α is not discrete, then for every n, the polynomial L_{n} exists and is unique.

In [2], we have studied the asymptotic behavior of the orthogonal polynomials $\left\{L_{n}\right\}$, where $F=E \cup\left\{z_{k}\right\}_{k=1}^{N}, E$ a rectifiable Jordan curve and $z_{k} \in \Omega, \Omega=\operatorname{exterior}(E) ; \alpha=\beta+\gamma ; \beta$ is concentrated on E and is absolutely continuous with respect to the Lebesgue measure $|d \xi|$ on the arc; $d \beta=\rho(\xi)|d \xi| ;$ and γ is a discrete measure with masses A_{k} at the points $z_{k} \in \operatorname{Ext}(E), k=1,2, \ldots, N$.

In this paper we generalize Theorem 4.1 of [2], when $F=E \cup\left\{z_{k}\right\}_{k=1}^{\infty}$; $\alpha=\beta+\gamma$; and E and β possess the same characteristics as in [2].

$$
\gamma=\sum_{k=1}^{\infty} A_{k} \delta_{z_{k}}, \quad A_{k}>0, \quad \sum_{k=1}^{\infty} A_{k}<+\infty .
$$

2. THE SPACE $H^{2}(\Omega, \rho)$

Suppose E is a rectifiable Jordan curve in the complex plane, $\Omega=\operatorname{Ext}(E), G=\{w \in C /|w|>1\}(\infty \in \Omega, \infty \in G)$, and $\Phi: \Omega \rightarrow G$ is the conformal mapping with $\Phi(\infty)=\infty$ and $\lim _{z \rightarrow \infty}(\Phi(z) / z)>0$. Then

$$
\Phi(z)=\frac{1}{C(E)} z+c_{0}+\frac{c_{1}}{z}+\frac{c_{2}}{z^{2}}+\cdots
$$

in a neighborhood of infinity. We denote $\Psi=\Phi^{-1}$.
Let $H(\Omega)$ be the space of functions analytic in Ω. We say that $f \in H^{2}(\Omega)$ if $f \in H(\Omega)$ and

$$
\int_{E r}|f(z)|^{2}|d z| \leqslant C, \quad 1<r \leqslant 2, \quad E r=\{z:|\Phi(z)|=r\}
$$

and C is a constant independent of r. A function $f \in H^{2}(\Omega)$ if and only if $f(\Psi(w)) \cdot \sqrt{\Psi^{\prime}(w)} \in H^{2}(G)$, and a function $F \in H^{2}(G)$ if and only if $F\left(1 / w^{\prime}\right) \in H^{2}(D) ;\left(w^{\prime} \in D ; D=\{z \in C /|z|<1\}\right)$. The space $H^{2}(D)$ is well known (see $[3,5]$).

Let $\rho(\xi)$ be an integrable nonnegative function on E. If the weight function $\rho(\xi)$ satisfies the Szegő condition

$$
\begin{equation*}
\int_{E} \log (\rho(\xi))\left|\Phi^{\prime}(\xi)\right||d \xi|>-\infty \tag{2.1}
\end{equation*}
$$

then one can construct the so-called Szegő function $D_{\rho}(z)$ associated with domain Ω and weight function $\rho(\xi)$ with the following properties:

$$
D_{\rho} \in H^{2}(\Omega) ; \quad D_{\rho}(z) \neq 0 \quad(z \in \Omega) ; \quad D_{\rho}(\infty)>0 ; \quad\left|\tilde{D}_{\rho}(\xi)\right|^{2}=\rho(\xi)
$$

where $\widetilde{D}_{\rho}(\xi)=\lim _{z \rightarrow \xi} D_{\rho}(z)$ (almost everywhere on E) (see [6]).
Let $f(z)$ be a function in $H(\Omega)$; we say that $f \in H^{2}(\Omega, \rho)$ if $\left(f \cdot D_{\rho}\right) \in H^{2}(\Omega)$. We find the principal properties of the space $H^{2}(\Omega, \rho)$ in the following theorem:

Theorem 2.1 [2]. If $f(z) \in H^{2}(\Omega, \rho)$ then almost everywhere on E the angular limit $\tilde{f}(\xi)$ exists: $\widetilde{f}(\xi)=\lim _{z \rightarrow \xi} f(z)$. Furthermore,
(1) $\tilde{f} \in L^{2}(E, \rho(\xi)|d \xi|)$
(2) $\left(H^{2}(\Omega, \rho),\|\cdot\|_{\rho}\right)$ is a Hilbert space where

$$
\|f\|_{\rho}^{2}=\langle f, f\rangle_{\rho} \quad \text { and } \quad\langle f, g\rangle_{\rho}=\int_{E} \tilde{f}(\xi) \overline{\tilde{g}}(\xi) \rho(\xi)|d \xi|,
$$

for $f \in H^{2}(\Omega, \rho)$ and $g \in H^{2}(\Omega, \rho)$.
(3) If $K \subset \Omega, K$ compact, then there exists a constant $C(K)(C(K)$ depends only on K) possessing the following property:

$$
\begin{equation*}
\forall f \in H^{2}(\Omega, \rho), \quad \forall z \in K, \quad|f(z)| \leqslant C(K)\|f\|_{\rho} \tag{2.2}
\end{equation*}
$$

3. ASYMPTOTIC BEHAVIOR

We now study the asymptotic behavior of orthogonal polynomials $\left\{L_{n}\right\}$ associated to the measure $\alpha=\beta+\gamma$. We say that a measure α belongs to the class S (denoted by $\alpha \in S$) if the absolutely continuous part β of α is such that:

$$
d \beta=\rho(\xi)|d(\xi)|, \quad \rho: E \rightarrow R_{+}, \quad \int_{E} \rho(\xi)|d \xi|<+\infty
$$

and

$$
\begin{equation*}
\int_{E} \log (\rho(\xi))\left|\Phi^{\prime}(\xi)\right||d \xi|>-\infty . \tag{3.1}
\end{equation*}
$$

The measure γ is such that

$$
\begin{equation*}
\gamma=\sum_{k=1}^{\infty} A_{k} \delta_{z k} ; \quad A_{k}>0 ; \quad \sum_{k=1}^{\infty} A_{k}<+\infty . \tag{3.2}
\end{equation*}
$$

We suppose that the moments of α exist.
Relations (1.1) become:

$$
\begin{gather*}
L_{n}(z)=z^{n}+\cdots ; \quad \int_{E} L_{n}(\xi) \bar{\xi}^{p} \rho(\xi)|d \xi|+\sum_{k=1}^{\infty} A_{k} L_{n}\left(z_{k}\right) \bar{z}_{k}^{p}=0 ; \\
p=0,1,2, \ldots, n-1 . \tag{3.3}
\end{gather*}
$$

Definition 3.1. Let $\alpha=\beta+\gamma$ be such that $\alpha \in S$. We say that a measure α belongs to the class \widetilde{S} (denoted by $\alpha \in \widetilde{S}$) if the discrete part γ of α satisfies (3.2), and moreover:

$$
\begin{align*}
&\left(\sum_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|-1\right)<\infty \tag{3.4}\\
& \frac{\int_{E}\left|L_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|}{\sum_{k=1}^{\infty} A_{k}\left|L_{n}\left(z_{k}\right)\right|^{2}} \geqslant \frac{1}{\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2}-1} . \tag{3.5}
\end{align*}
$$

The extremal polynomial L_{n} is such that

$$
\begin{equation*}
\left\|L_{n}\right\|_{\alpha}^{2}=\min \left\{\left\|Q_{n}\right\|_{\alpha}^{2}: Q_{n}=z^{n}+a_{n-1} z^{n-1}+\cdots+a_{0}\right\}=m_{n}(\alpha), \tag{3.6}
\end{equation*}
$$

where

$$
\left\|L_{n}\right\|_{\alpha}^{2}=\int_{E}\left|L_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|+\sum_{k=1}^{\infty} A_{k}\left|L_{n}\left(z_{k}\right)\right|^{2} .
$$

Define $\mu_{n}(\alpha), \mu(\alpha)$, and $\hat{\mu}(\alpha)$ as the extremal values of the following problems:

$$
\begin{gather*}
\mu_{n}(\alpha)=\min \left\{\int_{E}\left|\varphi_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|+\sum_{k=1}^{\infty} A_{k}\left|\Phi\left(z_{k}\right)\right|^{2 n}\left|\varphi_{n}\left(z_{k}\right)\right|^{2}:\right. \\
\left.\varphi_{n}=\frac{Q_{n}}{[C(E) \Phi]^{n}} ; Q_{n} \in P_{n} ; \varphi_{n}(\infty)=1\right\} \tag{3.7}
\end{gather*}
$$

(P_{n} is the set of polynomials of degree at most n.)

$$
\begin{align*}
& \mu(\alpha)=\inf \left\{\|\varphi\|_{\rho}^{2}: \varphi \in H^{2}(\Omega, \rho), \varphi(\infty)=1\right\} \tag{3.8}\\
& \hat{\mu}(\alpha)=\inf \left\{\|\varphi\|_{\rho}^{2}: \varphi \in H^{2}(\Omega, \rho) ; \varphi(\infty)=1 ; \varphi\left(z_{k}\right)=0, k=1,2, \ldots\right\} \tag{3.9}
\end{align*}
$$

We denote respectively by $\varphi_{n}^{*}, \varphi^{*}$, and $\hat{\varphi}^{*}$ the extremal functions of the problems (3.7), (3.8), and (3.9). We have

$$
\begin{equation*}
\varphi_{n}^{*}=\frac{L_{n}}{[C(E) \Phi]^{n}} \quad \text { and } \quad \mu_{n}(\alpha)=\frac{m_{n}(\alpha)}{C(E)^{2 n}} . \tag{3.10}
\end{equation*}
$$

We denote by Φ_{n} the polynomial part of the Laurent expansion of Φ^{n} in a neighborhood of infinity and $\lambda_{n}=\Phi^{n}-\Phi_{n}$.

Geronimus introduced in [1] a class of curves denoted by τ, and defined it as follows:

$$
\begin{align*}
& \text { A rectifiable Jordan curve } E \text { belongs to the class } \tau \text { if } \\
& \lambda_{n}(\xi) \rightarrow 0 \text {, uniformly on } E \text {. } \tag{3.11}
\end{align*}
$$

We find in [1, pp. 22, 23] the following families of curves belonging to the class τ :
(a) The analytic curves. The property (3.11) has been proved by Faber;

$$
\left|\lambda_{n}(\xi)\right| \leqslant C r^{n}, \quad 0<r<1
$$

(see Szegő [7]).
(b) The smooth curves $z(t)$, whose derivatives $z^{\prime}(t)$ satisfy the Lipschitz condition:

$$
\left|z^{\prime}\left(t_{1}\right)-z^{\prime}\left(t_{2}\right)\right|<L\left|t_{1}-t_{2}\right|^{\alpha}, \quad 0<\alpha \leqslant 1 .
$$

In this case, we get from Korovkin [4] the following inequality: $\left|\lambda_{n}(\xi)\right|<C / n^{\alpha_{1}}, 0<\alpha_{1}<\alpha, \xi \in E$.
(c) We can find in [1] other families of curves satisfying (3.11) whose descriptions are not as explicit as the former ones.

The result of this paper is
Theorem 3.1. Let $\alpha=\beta+\gamma$ such that $\alpha \in \widetilde{S}, E \in \tau$, and $\left\{L_{n}\right\}$ is the system of monic orthogonal polynomials associated to α. Then we have:
(1) $\lim _{n \rightarrow \infty}\left\|\left(L_{n} /[C(E) \Phi]^{n}\right)-\hat{\varphi}^{*}\right\|_{\rho}^{2}=0$
(2) $L_{n}(z)=C(E)^{n} \Phi^{n}(z)\left[\left(\varphi^{*}(z) \cdot B(z)\right)+\varepsilon_{n}(z)\right]$,

$$
\begin{equation*}
B(z)=\prod_{k=1}^{\infty} \frac{\Phi(z)-\Phi\left(z_{k}\right)}{\left(\Phi(z) \cdot \overline{\Phi\left(z_{k}\right)}\right)-1} \cdot \frac{\left|\Phi\left(z_{k}\right)\right|^{2}}{\Phi\left(z_{k}\right)}, \tag{3.13}
\end{equation*}
$$

$\varepsilon_{n} \rightarrow 0$, uniformly on compact sets of Ω.
We begin by proving the next lemmas:
Lemma 3.1. Let $\varphi \in H^{2}(\Omega, \rho)$ such that $\varphi(\infty)=1$ and $\varphi\left(z_{k}\right)=0$, $k=1,2, \ldots$ and B the Blaschke product (3.14). Then:
(1) $B \in H^{2}(\Omega, \rho) ; \quad B(\infty)=1 ; \quad|\widetilde{B}(\xi)|=\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right| \quad\left(\widetilde{B}(\xi)=\lim _{z \rightarrow \xi} B(z)\right)$
(2) $\frac{\varphi}{B} \in H^{2}(\Omega, \rho) \quad$ and $\quad\left(\frac{\varphi}{B}\right)(\infty)=1$.

Proof of Lemma 3.1. (1) is evident if we remark that

$$
B(z)=k_{1}(\Phi(z)),
$$

where

$$
k_{1}(w)=\prod_{k=1}^{\infty} \frac{w-w_{k}}{w \bar{w}_{k}-1} \cdot \frac{\left|w_{k}\right|^{2}}{w_{k}}, \quad w_{k}=\Phi\left(z_{k}\right), \quad|w|>1
$$

and

$$
\forall w: k_{1}(w)=k_{2}(w) \cdot \prod_{k=1}^{\infty}\left|w_{k}\right|,
$$

where

$$
k_{2}(w)=\prod_{k=1}^{\infty} \frac{w-w_{k}}{w \bar{w}_{k}-1} \frac{\left|w_{k}\right|}{w_{k}},
$$

k_{2} is bounded in G, and $\left|\widetilde{k}_{2}\left(e^{i \theta}\right)\right|=1$ almost everywhere. \widetilde{k}_{2} is the angular limit of k_{2} (see [3] and [5]).
(2) $B\left(z_{k}\right)=0, k=1,2, \ldots$, and $B(z) \neq 0$ if $z \neq z_{k}$. Then $\left\{z_{k}\right\}$ are regular for φ / B. Therefore φ / B has an analytic extension in Ω.

Now we show that $\varphi / B \in H^{2}(\Omega, \rho)$. It suffices to prove that

$$
L\left(w^{\prime}\right) \in H^{2}(D),
$$

where $D=\left\{w^{\prime}:\left|w^{\prime}\right|<1\right\}$ and

$$
L\left(w^{\prime}\right)=\frac{\varphi\left(\Psi\left(1 / w^{\prime}\right)\right) D_{\rho}\left(\Psi\left(1 / w^{\prime}\right)\right) \cdot \sqrt{\Psi^{\prime}\left(1 / w^{\prime}\right)}}{B\left(\Psi\left(1 / w^{\prime}\right)\right)} .
$$

Effectively, we have that

$$
F\left(w^{\prime}\right)=\varphi\left(\Psi\left(\frac{1}{w^{\prime}}\right)\right) \cdot D_{\rho}\left(\Psi\left(\frac{1}{w^{\prime}}\right)\right) \cdot \sqrt{\Psi^{\prime}\left(\frac{1}{w^{\prime}}\right)} \in H^{2}(D),
$$

and

$$
F\left(w_{k}^{\prime}\right)=0 \quad\left(w_{k}^{\prime}=\frac{1}{\Phi\left(z_{k}\right)}, k=1,2, \ldots\right) .
$$

Now if we consider the classical Blaschke product $K\left(w^{\prime}\right)$ [3, 5]:

$$
K\left(w^{\prime}\right)=\prod_{k=1}^{\infty} \frac{w^{\prime}-w_{k}^{\prime}}{w^{\prime} \bar{w}_{k}^{\prime}-1} \cdot \frac{\left|w_{k}^{\prime}\right|}{w_{k}^{\prime}}, \quad\left|w^{\prime}\right|<1,
$$

and

$$
B_{1}\left(w^{\prime}\right)=B\left(\Psi\left(\frac{1}{w^{\prime}}\right)\right),
$$

then we have

$$
B_{1}\left(w^{\prime}\right)=K\left(w^{\prime}\right) \cdot \prod_{k=1}^{\infty} \frac{1}{\left|w_{k}^{\prime}\right|}, \quad\left|w^{\prime}\right|<1 .
$$

Finally,

$$
L\left(w^{\prime}\right)=\frac{F\left(w^{\prime}\right)}{K\left(w^{\prime}\right)} \cdot \frac{1}{\prod_{k=1}^{\infty}\left(1 /\left|w_{k}^{\prime}\right|\right)} \quad \text { and } \quad \frac{F}{K} \in H^{2}(D) \quad([3,5]) .
$$

Lemma 3.2. The extremal functions $\hat{\varphi}^{*}$ and φ^{*} are connected by

$$
\hat{\varphi}^{*}(z)=B(z) \cdot \varphi^{*}(z) \quad \text { and } \quad \hat{\mu}(\alpha)=\mu(\alpha) \cdot\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2} .
$$

Proof of Lemma 3.2. The proof is the same as that of Lemma 4.2 of [2]. We replace the finite Blaschke product by the infinite product B.

Proof of Theorem 3.1. As in Theorem 4.1 of [2], the essential step is to prove

$$
\begin{equation*}
\lim \mu_{n}(\alpha)=\hat{\mu}(\alpha) . \tag{3.15}
\end{equation*}
$$

(A) An upper bound of $\overline{\lim } \mu_{n}(\alpha)$. We have

$$
\mu_{n}(\alpha)=\frac{1}{C(E)^{2 n}}\left(\int_{E}\left|L_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|+\sum_{k=1}^{\infty} A_{k}\left|L_{n}\left(z_{k}\right)\right|^{2}\right)
$$

and

$$
\begin{aligned}
& \min \left\{\int_{E}\left|\varphi_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|+\sum_{k=1}^{\infty} A_{k}\left|\Phi\left(z_{k}\right)\right|^{2 n}\left|\varphi_{n}\left(z_{k}\right)\right|^{2}:\right. \\
& \left.\varphi_{n}=\frac{Q_{n} B}{[C(E) \Phi]^{n}} ; \varphi_{n}(\infty)=1\right\} \\
& =\frac{1}{C(E)^{2 n}}\left(\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2} \cdot \int_{E}\left|L_{n}(\xi)\right|^{2} \rho(\xi)|d \xi|\right)=\mu_{n}\left(\rho^{\prime}\right) \\
& \rho^{\prime}=\rho \cdot\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2}
\end{aligned}
$$

and

$$
\begin{gathered}
\mu_{n}\left(\rho^{\prime}\right)=\min \left\{\int_{E}\left|\varphi_{n}(\xi)\right|^{2} \rho^{\prime}(\xi)|d \xi|: \varphi_{n}=\frac{Q_{n}}{[C(E) \Phi]^{n}} ; \varphi_{n}(\infty)=1\right\}, \\
\alpha \in \widetilde{S} \Rightarrow \mu_{n}(\alpha) \leqslant \mu_{n}\left(\rho^{\prime}\right) \quad \text { and } \quad \mu_{n}\left(\rho^{\prime}\right) \rightarrow \mu\left(\rho^{\prime}\right)
\end{gathered}
$$

(see [2]), where

$$
\mu\left(\rho^{\prime}\right)=\inf \left\{\int_{E}|\tilde{\varphi}(\xi)|^{2} \rho^{\prime}(\xi)|d \xi|: \varphi \in H^{2}(\Omega, \rho) ; \varphi(\infty)=1\right\} .
$$

Finally, we have

$$
\begin{equation*}
\overline{\lim } \mu_{n}(\alpha) \leqslant \mu\left(\rho^{\prime}\right) \tag{3.16}
\end{equation*}
$$

We prove without difficulty as in Lemma 4.1 of [2] (we replace ω_{ℓ} in [2] by B) that

$$
\begin{align*}
\mu\left(\rho^{\prime}\right) & =\hat{\mu}(\alpha) . \tag{3.17}\\
\text { (3.16) and (3.17) } & \Rightarrow \quad \varlimsup \quad \lim \mu_{n}(\alpha) \leqslant \hat{\mu}(\alpha) . \tag{3.18}
\end{align*}
$$

(B) A lower bound of $\underline{\lim } \mu_{n}(\alpha)$. We have

$$
\begin{equation*}
\forall \ell>0, \quad \mu_{n}(\alpha) \geqslant \mu_{n}(\ell) \tag{3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mu_{n}(\ell)= \frac{1}{C(E)^{2 n}} \min \left\{\int_{E}|Q(\xi)|^{2} \rho(\xi)|d \xi|+\sum_{k=1}^{\ell} A_{k}\left|Q\left(z_{k}\right)\right|^{2}:\right. \\
&\left.Q(z)=z^{n}+\cdots+a_{0}\right\} .
\end{aligned}
$$

It is well known (from [2]) that $\mu_{n}(\ell) \xrightarrow[n \rightarrow+\infty]{\longrightarrow} \mu(\ell)$, where

$$
\mu(\ell)=\inf \left\{\|\varphi\|_{\rho}^{2}: \varphi \in H^{2}(\Omega, \rho) ; \varphi(\infty)=1 ; \varphi\left(z_{k}\right)=0, k=1,2, \ldots, \ell\right\} .
$$

We have also that

$$
\mu(\ell)=\mu(\alpha) \cdot\left(\prod_{k=1}^{\ell}\left|\Phi\left(z_{k}\right)\right|\right)^{2}
$$

and

$$
\hat{\mu}(\alpha)=\mu(\alpha) \cdot\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2} \quad(\text { Lemma 3.2). }
$$

We then obtain that

$$
\forall \ell>0, \quad \underline{\lim } \mu_{n}(\alpha) \geqslant \mu(\alpha) \cdot\left(\prod_{k=1}^{\ell}\left|\Phi\left(z_{k}\right)\right|\right)^{2}
$$

and finally that

$$
\begin{align*}
& \underline{\lim } \mu_{n}(\alpha) \geqslant \mu(\alpha) \cdot\left(\prod_{k=1}^{\infty}\left|\Phi\left(z_{k}\right)\right|\right)^{2}=\hat{\mu}(\alpha) . \\
& \text { (A) and (B) } \quad \Rightarrow \quad \lim \mu_{n}(\alpha)=\hat{\mu}(\alpha) . \tag{3.20}
\end{align*}
$$

We obtain (3.12) of Theorem 3.1 by proceeding as in [2, pp. 42, 43]. Then (3.12), (2.2), and Lemma 3.2 imply (3.13) of Theorem 3.1.

REFERENCES

1. J. Geronimus, Extremal problems in the space $L^{2}(\sigma)$, Mat. $\operatorname{Sb} .31$ (1952), 3-26 [in Russian].
2. V. Kaliaguine and R. Benzine, Sur la formule asymptôtique des polynomes orthogonaux associés à une mesure concentrée sur un contour plus une partie discrète finie, Bull. Soc. Math. Belg. Ser. B 41, No. 1 (1989), 29-46.
3. P. Koossis, "Introduction to H^{p} Spaces," London Math. Soc. Lecture Notes Series, Vol. 40, Cambridge Univ. Press, Cambridge, 1980.
4. P. P. Korovkin, On polynomials, orthogonal on a rectifiable curve, with respect to a weight function, Mat. Sb. 9 (1941), 469-484 [in Russian].
5. W. Rudin, "Real and Complex Analysis," McGraw-Hill, New York, 1968.
6. V. I. Smirnov and N. A. Lebedev, "The Constructive Theory of Functions of a Complex Variable," Nauka, Moscow, 1964 [in Russian]; M.I.T. Press, Cambridge, MA, 1968 [Engl. transl.].
7. G. Szegő, "Orthogonal Polynomials," Amer. Math. Soc. Colloq. Publ., Vol. 23, 4th ed., American Math. Society, Providence, RI, 1975.
